Introduction

Code signing is the process all developers encounter
while making releases for the Apple App Store or making
builds for an in-house distribution. If the setup of your
development environment is done right, it's no problem.
Sometimes, though, there are issues which result in a code sign
error. This article relates to the problem I encountered while
making several releases of Apps for either the App Store or for
the company’s in-house account. Not only do I write about the
problem, I have also found a solution / workaround

What is code signing?

According to tech note #2250 of the Apple Documentation
for 10S development: “Code signing is the process by which
your compiled iOS Application is sealed and identified as
yours.” In order to code sign we need signing certificates and
provisioning profiles.

An app is signed when you want to:

* Run an app on a development device;

* Testing of the app using an Ad Hoc Distribution;

* Submitting your App to the App Store;

* Creating and installing an Enterprise build for In-House

Distribution.

Problem

You have two Apple Developer Accounts, one for the App
Store and one for In-House Apps. Both have the same
company name in the portal and thus also in the distribution
certificates. These names are set according to the name of your
company as listed in the Chamber of Commerce. If you have
both accounts setup on your development Mac, and you want
to make a release of an app for either account, the following

€ITor OCcurs:

Code Sign error: Certificate identity ‘iPhone Distribution:
{Name>.' appears mere than cnce in the keychain. The
cedesign tool requires there only be one

58 FEBRUARY » 2013

So changing the name was not going to happen. That was
by the way the only advice Apple gave us. But ok, lets create a
workaround.

Investigating a better solution

Using different keychains is what Apple advised. So I
created a new keychain, using the Keychain Access application,
found in /Applications/Utilities. I placed in this
keychain the needed distribution certificate and the key-pair.
And we should be on our merry way, right? No, not really, the
error was still there. What is happening? 1 have placed the
certificate in a different keychain, why is there still a code sign
error?

Then it hit me, I knew that the actual building of a project

was handled using the xcodebuild UNIX executable. What if

the code signing is also being handled using a UNIX
application? Mac OS X is a UNIX environment. It turned out that
the code signing is handled using the UNIX executable
codesign. Well, if there is a UNIX application, most likely
there is also a man page of the UNIX executable. I opened the
Terminal and tried man codesign. It worked. There is a man
page. Looking through the man page, one part caught my eye:

keychain filename

During signing, only search fer the signing
identity in the keychain file specified. This can be used
toe break any matching ties if you have multiple similarly
named identities in several keychains on the user's search
list. Note that the standard keychain search path is still
consulted while constructing the certificate chain being
embedded in the signature.

There is thus an option to force the use of a keychain.

Code Signing Entitlements
¥ Code Signing Identity «Multiple values> {
Debug iPhone Developer: Arnold Nefkens (AQROPSEMWT) §
Any 108 SOK ¢ iPhone Developer: Arnold Nefkens (AQRIPSENWT) |
Release iPhone Virtual Affairs Bv.:
Any 105 SDK 3 iPhone Virtual Affairs V.2
Code Signing Resource Rules Path
Other Code Signing Flags

Figure 1 - Codesign options in Xcode.

In the Build Settings of an target you can set the “Other
Code Signing Flags”, these flags are the options and commands
found in the man page of the codesign executable.

In here I set the correct flag of the needed keychain. I used
the absolute path to the keychain. Keychains are by default
located in your
/Users/<username>/Library/Keychains/.

Using a relative path did not work, as a side note, in my
experience it is better to use absolute paths when working in
the terminal.

Still the code sign error. What now? I took a closer look in
the man page, there is a note in there: “Note that the standard
keychain search path is still consulted while constructing the
certificate chain being embedded in the signature.”

Search path? What search path? What if... What if... The
keychains listed in the Keychain Access application are not the

MACTECH

®

domains

Register

Get your .COM
or any other
domain name
here!

FREE with every domain:

* FREE! Starter Web Page
| » FREE! Getting Started Guide

* FREE! Complete Email

* FREE! Change of Registration
|+ FREE! Parked Page w/ Domain

At least, that was the error we encountered when we had
setup our development Macs and tried to make a release of an
app for the App Store. First we thought that one of our Macs
was not setup properly, so we tried on another Mac, one of our
colleagues. And she had made a successful release just a week
before. But now encountered the same error as I did.

Why was the build not successful? We do have the right
certificate and keys, don't we? So the first step we took was
removing the certificates and keys and starting over. We just
deleted everything we had that was certificate related and
started over. For now, we limited ourselves in setting up the
App Store account. As you can probably guess, this was
happening on a Friday afternoon, when we had to do a release
in the App Store, and the deadline was that Friday afternoon.
So we had setup our development Macs and made the release,
no problem.

After a couple of days we needed to release an In-House
app, and since we deleted the necessary certificates for our In-
House account, we added it, made double sure that we had a
different key-pair and downloaded the new certificate. Double-
clicked on the “ios_distribution.cer” file and double-checked in
the Keychain if the private key was attached to the certificate.
It was. So we are good, right” Wrong, the moment we did the
Archive of the in-house build, the darn error was back. “What
is happening?”, we asked ourselves. Next step we even resorted
in deleting ourselves as team members to start fully from
scratch. A step to be taken as a last resort, but did not work at
all.

All these experiences started my investigation in the why
and what is happening.

Use of the Terminal

When I talk to iOS developers, I have learned that a lot of
developers do not really like the Terminal. Thanks to my
experience as a Server Administrator the Terminal is an
environment [prefer to do my maintenance of servers and
clients. And in solving this problem that experience helped a
lot. Without the terminal knowledge the problem would almost
impossible to solve.

Analysis of the problem

What is happening, exactly? What does the error mean?
How can we solve this? First we had some discussion about
what the best approach was, and one of us mentioned: “Why
not ask Apple to change the name of the portal?”

Short-term solution

Changing the name would be the easiest solution, if the
names were different, then there would be only one iPhone
Distribution Certificate with that specific name. So I contacted
Apple, to ask them if it was possible to change the name of our
Enterprise account. The answer Apple gave me was that I had
to use different keychains.

WWW.MACTECH.COM

actual keychain files, but a list of keychains that are combined
as the search path that the codesign consults? That would be
interesting.

Keychains

(&% Development
@& NefkensICT

£ VA-AppStore :

. = |

Figure 2 - Keychain search path.

How can we alter the search path in Keychain Access? It is
a Mac application, so what comes naturally to me, is just delete
a keychain in the list.

If you want to delete a keychain, just select the keychain
and press backspace. The following message appears:

% 0 Delete Keychain
The references 10 be deleted refer to fles on your duk. Do you wish 1o delete only the
references and not the related fles?

Delete References & Files

Cancel | [Dulote Raferences |

s

Figure 3 - Keychain warning.

As you can see the Keychains list is indeed just a list of
references to the actual files on your disk.

Therefore is the list, as displayed in the Keychain Access
application, the actual search path of keychains that are
consulted when constructing the certificate chain which is
being embedded in the signature.

Now a solution is forming. As long as we click on the
default option “Delete References” we will be fine. And when
we need to do a build, for either account, we just add the
keychain reference we need and delete the other keychain
reference.

Solution / Workaround

Essentially there is not really a solution, but it is more of a
workaround. For me the following setup of certificates, private
keys and such works best. Most of the harder code sign errors
are gone.

Setup

Create a Keychain file called: “Development” or any other
name that makes sense to you.

Right-Click in the Keychain list and select “New Keychain”,
store this keychain file in the same location as the other

CoDE SIGN HELL 59

keychain files, by default the location s
/Users/<username>/Library/Keychains/.

en0o

Keychains |

o' login

L& Developmens 1
& VA-Appse New Keychain...

Obsoletecy Add Keychain...

&

@& Microsoft_| Delete Keychain “Development” 3

& FilevaultM Unlock Keychain “Development” 3

@ System Make Keychain “Development” Default

) System Roi 4
Change Settings for Keychain “Development™... .

Change Password for Keychain "Development™...
TR R Rl S Wk A Z A8 P aiAras Oaiaein

Figure 4 - Keychain options.

In this keychain you store your development certificates
and keys. You can just drag and drop the certificate and key-
pairs from the Login Keychain, most likely the keychain in
which these items are already stored. Keep in mind that you
have to enter your password for the originating keychain when
moving the certificate and the private key. If you want the
keychain to have the same settings as in Figure 5, right-click on
the “Development” keychain and select change “Change
Settings for Keychain “Development”.

“Development” Keychain Settings

[Lock after 5 |7/ minutes of inactivity

|_| Lock when sleeping

* FREE! Domain Name Locking | |
« FREE! Status Alert |
« FREE! Total DNS Control : Z [Comcel_] [

Just visit ‘
www.mactechdomains.com|
to register for your domain today!

when a non-domain name product
is purchased. Limitations apply.

& 4 > [N DemobuildPhase

Figure 5 - Keychain settings.

In this settings pane you can mimic the settings of the
Login keychain.

Create another Keychain file named: "App Store” or any
other name that makes sense to you.

In this keychain you place all the distribution certificates
and necessary key-pairs for use in the App Store. Besides the
distribution certificate I also place a copy of the Apple WWDR
intermediate certificate, just to be sure.

Create the last keychain file, and name it: “In-House" or
any other name that makes sense to you.

In this last keychain you place all of the needed certificates
and key-pairs for using in the In-House account. Just to be sure
I also place here another copy of the Apple WWDR
intermediate certificate.

WWW.MACTECH.COM

v m 5 PROJECT | summary | info Build Settings Build Phases Build Rules
v (5 DemoBuildPhase [DemoBuildPhase i0S Application Target
% :g::x::::::' TARC?? = Bundle Identifier | com.nict.DemoBulldPhase
En_l NICTFirstViewController.h Version | 1.0] Bulld 1.0
im] NICTFirstViewController.m e R
T Rees nna Devices | iPhone ¢

Figure 6 - Build phase with target selected.

Workflow after setup

So before you do a build for the App Store, for example,
you delete the reference of the In-House keychain file, using
the Keychain Access application. And make sure you do have
the App Store keychain reference listed in the Keychain Access
application. Now the building should not be a problem
anymore. Or at least the code sign error is gone. When you
want to make a release for the In-House account you do the
same, but now removing the App Store keychain and adding
the In-House keychain references.

Bonus

Having to change the search path of the keychain
manually is somewhat of a pain, and can be easily forgotten.
For this reason I investigated the possibility of changing the
search path using the terminal. This is also possible. There is a
UNIX executable called: security. With this executable you
have command-line access to keychains and the Security
Framework of your Mac. I checked the man page of the
executable: man security.

In the man page of security we find the following
option, amongst a ton of other options:

Excerpt from man page of security

list-keychains [-h] [-d user|system|common|dynamic] [-s
[keychain...]]
Display or manipulate the keychain search list.
-d user|system|commen|dynamic
Use the specified preference domain.
s Set the search list to the specified
keychains.

As a result of this command we cannot only list the search
path in the Keychain Access via the command line, but we can
also set it using the extra flag -s.

If we can change the search path using the command line,
can we use that script line in Xcode during the build process?
Yes, we can.

Part of Xcode is the capability of executing shell scripts
before and/or after the building. We could use this feature for
setting the search path for the project and setting them back
after the build is done.

How to change to change the search path

MACTECH

As you can see in the screenshot in Figure 8, we now have
to option to create a custom shell script that will be executed
after the Target Dependencies, and before the actual
Compiling. Now what do we put in the script?

We use the following line of shell script when I need to do
In-House build:
fusr/bin/security -v list-keychains -s
/Users/{username>/Library/Keychains/VA-Enterprise.keychain
/Users/<username>/Library/Keychains/login.keychain
/Users/<username>/Library/Keychains/Development.keychain

I will explain the script line piece by piece; make sure that
you write the script line to be in one line:

-v this will make the command verbose, it will generate
more output in the logging always nice to see.

list-keychains is the command to tell the security CLI tool
you want to manipulate the search path.

-s The flag to set the search path with the keychains you
want.

Here you type the actual absolute paths to keychains you
want to use. In the above example we have three keychains we
want to include: VA-Enterprise.keychain, login.keychain and
the Development keychain.

We could add another build phase “Run Script” if we like
at the end to reset the search path back to the keychains you
would like to have. However if you add to all of your iOS
projects the script step in setting the correct search path, there
should be no need to have this extra step at the end.

Conclusion

If you have multiple distribution certificates with the same
name, you can get rid of the code sign error, if you move the
distribution certificates and key-pairs in separate keychains.

Keychains listed in the Keychain Access application are
references to the actual files.

The list of keychains is in effect the search path codesign
consults in creating the certificate chain, which is being
embedded in the signature.

Using the security UNIX executable you can change the
search path as a script step in Xcode.

using Xcode, before the actual building?

When you select a target in Xcode, you can see the “Build
Phases” and make changes to them.

Select the “Build Phase” and then click on the “Add Build
Phase”, then from the selection menu, select “Add Run Script”.
This will add the run script step to the build phases of your
target.

Add Copy Files
Add Run Script

Add Copy Headers

Figure 7 - Adding a script to run during build.

But beware the run script is added as the last step in the
phases. So we have to move the step up, so the script step is
executed before the compiling is being executed. We just have
to drag the step up to the desired moment in the build phases.

» Target Dependescies (0 Hems)
¥ Rus Sergt

el n/sn

W Show ermvrorment varabies o buld g
Run scrign osly when nstaking
npat Fies

» Unk Biary With Lbraries (3 Sems)

» Copy Busdie Resources (10 Rems)

Figure 8 - Dragging the run script step to the right order.

CoDE SIGN HELL 61

As an alternative you can change the search path manually
in the Keychain Access application, via deleting the reference
of the keychain you do not need, and adding the reference of
the keychain you do need.

An extra bonus can be, that if you are a freelancer and
working for a number of clients, you can off-course also create
keychain files for each client and store in here the client’s
distribution certificates and key-pairs.

For us, most of the code sign errors we now encounter are
easy to fix. We have created the extra keychains and added the
“Run Script” step to the “Build Phase” to change the search path
in the security framework, so the codesign process has only
access to the keychains needed for creating the certificate chain
that will be embedded in the signature.

Bibliography and References
Apple Documentation Tech Note: 2250
hitp://developer.apple.com/library/ios/#technotes/in2250/ _index.html

Man page of the codesign UNIX executable
Man page of the security UNIX executable

W I

About The Author

Arnold Nefkens is an independent Apple Consultant,
part of the Dutch ACN. In 2008, while attending the
WWDC, he started with iPhone development. He
has over 20 years of experience in Macintosh and
Server administration. At the moment he works as
an iOS Mobile Developer for Virtual Affairs, a full-

service Internet agency sitvated in Amsterdam,
Rotterdam and Sofia. He also works in his own company, Nefkens ICT, as a
member of the ACN network.

http://www.virtual-affairs.com
http://www.nefkens-ict.nl
https://twitter.com/nefkensict

Apple Certifed Training
Apple Certified Training Center (AATC)

As a AATC ComputerTree provides superior training to Apple
customers, from novice users to seasoned professionals.

We deliver Apple’s official curriculum on Apple hardware, Mac
0S X, pro applications and other key Apple technologies. The
comprehensive curriculum addresses a broad range of technical
proficiencies whether you're a first-time Mac user, an IT or
creative professional, or a service technician. The courses are
delivered by Apple Certified Trainers who maintain Apple’s
highest quality standards. Call or Register on-line.

" g | !7
@ComputerTree
=

www.computertree.com
(800) 467-9820
Winston-Salem, NC
Atlanta (Duluth, GA)

